
Parallelizing the Monte Carlo Simulation on MecSimCalc
Harry Peng1, Prof. Samer Adeeb2

1Department of Civil and Environmental Engineering, University of Alberta

BACKGROUND

MONTE CARLO SIMULATION
- Computational technique used to estimate the probability of different outcomes in a

process that involves variables that change by random amounts.
- Used where the underlying system is too complex to be solved analytically
- Has applications in civil engineering (ie. Strain demand in pipes subjected to ground

movement [1])
- However, computationally heavy and slow

PARALLEL COMPUTING

MULTIPROCESSING
- Can significantly reduce the computation time of Monte Carlo Simulations
- One way of achieving parallelism through using multiple CPU cores for processing
- Supported on MecSimCalc with multiple virtual CPUs

RESULTS

PROGRAM EXECUTION TIMES

METHOD

IMPLEMENTING MULTIPROCESSING

1. Modularize the Program
Arrange the program into functions so there is one function that runs the simulation.
This will make it easier to implement multiprocessing.

1. Import the Multiprocessing Module
import multiprocessing

1. Create a Shared Object
An object with shared memory between the processes will be required to store any
function return data. This is done using the manager object from the
multiprocessing module.
def main(inputs):
 ### Other Code
 manager = mp.Manager() # This is case-sensitive
 data = manager.list()
 ### Other Code

1. Count the Number of CPU Cores
def main(inputs):
 ### Other Code
 num_cores = multiprocessing.cpu_count()
 ### Other Code

1. Divide Tasks Among Each Process
def main(inputs):
 ### Other Code
 num_processes = num_cores # num_processes can also be a manually chosen int
 simulations_per_process = num_simulations // num_processes # Floor divide the tasks into
each process
 remainder = num_simulations % num_processes # Determine the remainder if there is one
 ### Other Code

1. Create the Processes
def main(inputs):
 ### Other Code
 processes = []
 for i in range(num_processes):
 # Create the process
 if i < remainder:
 p = mp.Process(target=simulation, args=(simulations_per_process+1,
simulation_args))
 # Add another simulation for each remainder found in step 5
 else:
 p = mp.Process(target=simulation, args=(simulations_per_process,
simulation_args))
 processes.append(p) # Add the process to the list of processes
 p.start() # Starts the process

 for p in processes:
 p.join()
 # This waits for other processes to finish executing before continuing
 ### Other Code

CONCLUSION

The ratio of execution time between multiprocessed and sequential
computations remains constant regardless of the number of iterations. In
the results, the multiprocessed approach takes approximately 10% of the
sequential execution time when using 16 CPU cores.

Additionally,, running the multiprocessed program with 16 cores is more
cost-effective compared to using fewer cores or running sequentially with
just 2 cores. Despite the higher cost per unit time, the speed of 16 cores in
parallel makes this the most cost-effective and time-efficient choice.

Implementing multiprocessing is essential for efficiently executing long
and computationally heavy Monte Carlo simulations, a task that would not
be practical otherwise.

- dfsdfdsf OBJECTIVES

- Develop a procedure to implement multiprocessing on pre-existing Monte Carlo
simulations in Python

- Assess the impact of multiprocessing on Monte Carlo simulation execution time
- Evaluate the cost feasibility of multiprocessing on MecSimCalc

Problem

Task 3 Task 2 Task 1 Processor

Serial Computing

Parallel Computing

Problem

Task 1

Task 2

Task 3

Processor 1

Processor 2

Processor 3

Figure 1: Graph of Monte Carlo Simulation results adapted from [2]. This graph illustrates the number of
matching dice rolls in 100 sets of 200 consecutive rolls.

[1] Q. Zheng, “Stress- and Strain-Based Reliability Assessment of Pipelines Subjected to Internal Pressure and Permanent Ground Movement,” Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, 2023.
[2] J. Matthew, “An introduction to Monte Carlo simulations using Python,” Medium, Oct. 14, 2023. https://medium.com/@matthew1992/an-introduction-to-monte-carlo-simulations-using-python-46c07eb11b6d (accessed Mar. 20, 2024).

Figure 2: Diagram comparing serial computing and parallel computing

Figure 3: Flowchart of multiprocessing implementation in Python on MecSimCalc.

import multiprocessing

Start

Create a Shared
Object

Count # of CPU
Cores

Divide Tasks Among
Processes

Create Processes

End

Figure 4: Graph comparing # of CPU cores to execution
time for a complex Monte Carlo simulation with 1,000
iterations using code adapted from [1].

Figure 5: Graph comparing # of CPU cores to execution
time for a complex Monte Carlo simulation with 10,000
iterations using code adapted from [1].

Execution Time (10,000 iterations)

Cores Sequential (s) Cost
(USD)

Multiprocessed (s) Cost
(USD)

2 12620.36506 1.03 12504.90886 1.02

4 12946.5503 1.97 6542.589321 1.04

8 12937.67383 2.99 3218.02439 0.82

16 12999.22588 4.78 1605.587904 0.71

Execution Time (1,000 iterations)

Cores Sequential (s) Cost
(USD)

Multiprocessed (s) Cost
(USD)

2 1292.293322 0.11 1201.466 0.11

4 1312.954062 0.18 636.8041 0.09

8 1257.982531 0.28 315.3643 0.09

16 1296.069194 0.58 132.832 0.08

Table 1: Relationship between # of CPU cores
and execution time and cost of sequential and
multiprocessed Monte Carlo simulation for
1,000 iterations.

Table 2: Relationship between # of CPU cores
and execution time and cost of sequential and
multiprocessed Monte Carlo simulation for
10,000 iterations.

Figure 6 & 7: Graph comparing # of CPU cores to cost for a complex Monte Carlo simulation with 1,000 and
10,000 iterations using code adapted from [1].

